Blow-Up Behavior of Collocation Solutions to Hammerstein-Type Volterra Integral Equations
نویسندگان
چکیده
We analyze the blow-up behavior of one-parameter collocation solutions for Hammerstein-type Volterra integral equations (VIEs) whose solutions may blow up in finite time. To approximate such solutions (and the corresponding blow-up time), we will introduce an adaptive stepsize strategy that guarantees the existence of collocation solutions whose blow-up behavior is the same as the one for the exact solution. Based on the local convergence of the collocation methods for VIEs, we present the convergence analysis for the numerical blow-up time. Numerical experiments illustrate the analysis.
منابع مشابه
Blow-up collocation solutions of nonlinear homogeneous Volterra integral equations
In this paper, collocation methods are used for detecting blow-up solutions of nonlinear homogeneous Volterra-Hammerstein integral equations. To do this, we introduce the concept of “blow-up collocation solution” and analyze numerically some blow-up time estimates using collocation methods in particular examples where previous results about existence and uniqueness can be applied. Finally, we d...
متن کاملALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS
Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...
متن کاملSolution of nonlinear Volterra-Hammerstein integral equations using alternative Legendre collocation method
Alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear Volterra-Hammerstein integral equations. For this purpose, the operational matrices of integration and the product for ALPs are derived. Then, using the collocation method, the considered problem is reduced into a set of nonlinear algebraic equations. The error analysis of the method is given an...
متن کاملNumerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method
In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.
متن کاملSolution of Nonlinear Volterra-hammerstein Integral Equations via Single-term Walsh Series Method
Several numerical methods for approximating the solution of Hammerstein integral equations are known. For Fredholm-Hammerstein integral equations, the classical method of successive approximations was introduced in [16]. A variation of the Nystrom method was presented in [11]. A collocation-type method was developed in [9]. In [3], Brunner applied a collocation-type method to nonlinear Volterra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2013